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Abstract—Online feature selection, as a new method which
deals with feature streams in an online manner, has attracted
much attention in recent years and played a critical role in
dealing with high-dimensional problems. In this paper, we define
a new Neighborhood Rough Set relation with adapted neighbors
and propose a new online streaming feature selection method
based on this relation. Our approach does not require any
domain knowledge and does not need to specify any parameters
in advance. With the “maximal-dependency, maximal-relevance
and maximal-significance” evaluation criteria, our new approach
can select features with high correlation, high dependency and
low redundancy. Experimental studies on ten different types of
data sets show that our approach is superior to traditional feature
selection methods with the same numbers of features and state-of-
the-art online streaming feature selection algorithms in an online
manner.

I. INTRODUCTION

Feature selection is an important technique in data mining.

Given a set of samples U = (C,D), with some condition

features C and decision classes D. Feature selection aims to

select a subset of C, which can be used to derive a mapping

function from samples to classes that is “as good as possible”

according to some criterion [1].

With the increasing of the scale of data, traditional batch

feature selection method can not meet the demand in ef-

ficiency any more. For example, Web Spam Corpus 2011,

a collection of approximately 330,000 spam web pages and

16,000,000 features (attributes) [2]. Meanwhile, in many real-

world applications, features are generated dynamically, and

arrive one by one over time. A real-world application is the

Mars crater detection from high resolution planetary images

[3]. It is infeasible to acquire the entire feature set which

means to have a near global coverage of the Martian surface.

Online streaming feature selection which deals with feature

streams in an online manner, has attracted much attention in

recent years and played a critical role in dealing with high-

dimensional problems [4], [5], [6], [7], [8], [9]. For instance,

OSFS (Online Streaming Feature Selection) [5], a method

of selecting strongly relevant and non-redundant features on

the fly and SAOLA (a Scalable and Accurate OnLine Ap-

proach) [8], which employs novel online pairwise comparison

techniques to address the extremely high dimensionality and

highly scalable challenges in an online manner. However,

all aforementioned algorithms need domain information or

specify some parameters in advance. It is hence a challenge

to select unified and optimal parameters before learning from

different data sets.

Rough Set theory, proposed by Pawlak, has been proven to

be an effective tool for feature selection, rule extraction and

knowledge discovery [10]. Pawlak’s rough sets are originally

proposed to deal with categorical data. However, in real-

world applications, there are many numerical features in data

sets. Thus, Neighborhood Rough Set which supports both

continuous and discrete data was proposed to deal with this

challenge [11]. One of the most important advantages for

Rough Set based data mining is that they do not require any

other domain knowledge [9]. There are some works using

neighborhood rough set for feature selection [12], [13], [14],

[15], [16]. Nevertheless, all these methods mentioned above

are proposed for traditional feature selection and they need to

specify parameter values in advance. It is always difficult to

select unified and optimal values for all different types of data

sets.

Motivated by this, we define a new Neighborhood Rough

Set relation which automatically select the number of neigh-

bors for each target object by its surrounding instances dis-

tribution. In terms of this relation, a new online streaming

feature selection algorithm is proposed to handle feature

selection in an online manner. This new approach does not

need to specify any parameters before learning and it can

handle different types of data well. In addition, we use three

maximal evaluation criteria (“maximal-dependency, maximal-

relevance and maximal-significance”) during feature selection

which makes our new approach can select features with high

correlation, high dependency and low redundancy.

The rest of paper is organized as follows. Section 2 dis-

cusses related work. Section 3 gives a brief introduction

to Neighborhood Rough Set theory. Section 4 presents our

new defined Neighborhood Rough Set relation and a new

online streaming feature selection approach based on this

relation. Section 5 reports experimental results and analyzes

all experimental algorithms. Section 6 concludes the paper.

II. RELATED WORK

Feature selection is one of the most important techniques

in machine learning. There are many representative algorithms

for traditional feature selection, such as ReliefF [17], Fisher
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Score [18], MI( Mutual Information)[19], mRMR (minimal

Redundancy and Maximal Relevance) [20] and LASSO (Least

Absolute Shrinkage and Selection Operator) [21]. All afore-

mentioned approaches assume that all candidate features are

available before learning. However, in many real-world appli-

cations, features are generated dynamically, and arrive one by

one over time [22]. To deal with feature streams in an online

manner, many online streaming feature selection methods have

been proposed recently.

More specifically, Zhou et al. [4] proposed two algorithms

of information-investing and alpha-investing, based on stream-

wise regression for online feature selection. Alpha-investing

does not need a global model and it is one of the penalized

likelihood ratio methods. Wu et al. [5] presented an online

streaming feature selection framework with two algorithms

called OSFS (Online Streaming Feature Selection) and fast-

OSFS. OSFS contains two major steps, including online

relevance analysis and online redundancy analysis. Yu et al.

[8] proposed the SAOLA approach (a Scalable and Accurate

Online feature selection Approach) for high dimensional data.

SAOLA employs novel online pairwise comparison techniques

and maintains a parsimonious model over time in an online

manner. Eskandari et al. [9] proposed a Rough Set based

method (OS-NRRSAR-SA) for online streaming feature selec-

tion. The proposed algorithm uses classical significance analy-

sis concepts in Rough Set theory to control an unknown feature

space in online streaming feature selection. However, Alpha

investing, OSFS and SAOLA require the domain information

before learning and specifying parameters in advance. OS-

NRRSAR-SA is a classical Rough Set based method which

can not deal with numerical features directly.

Meanwhile, we can find that there are some Neighborhood

Rough Set based methods for feature selection, such as [12],

[13], [14], [15], [16]. Nevertheless, all these methods are pro-

posed for traditional batch feature selection, and as we know,

there is no existing online streaming feature selection algorith-

m using Neighborhood Rough Set theory yet. In the following

sections, we will give a brief introduction to Neighborhood

Rough Set theory and present our new online streaming feature

selection method based on the new Neighborhood Rough Set

relation and three maximal evaluation criteria.

III. NEIGHBORHOOD ROUGH SET

Neighborhood Rough Set is used to replace the approxi-

mation based on equivalence relation of traditional rough set

model [10] with neighborhood relation, which supports both

continuous and discrete data sets. In this section, we briefly

review some basic concepts and notations of neighborhood

rough set as follows [14], [15].

An information system S = (U,A), where U =
{x1, x2, ..., xn} is a nonempty finite set of objects, called a

universe. A = {a1, a2, ..., am} is a nonempty finite set of

attributes (features). More specifically, S = (U,A, V, f) is

called a decision table if A = C
⋃

D, where C is a set

of condition attributes and D is a set of decision attributes,

C
⋂
D = ∅. V =

⋃
a∈A Va, Va is a domain of attribute

a. f : U × A → V is an information function such that

f(x, a) ∈ Va for every x ∈ U , a ∈ A. f(xi, aj) denotes

the value of object xi on the attributes aj .

Definition 1: Given U and C, let B ⊆ C be a subset of

attributes, x ∈ U . The neighborhood δB(x) of arbitrary object

x on the feature subset B is defined as:

δB(x) = {y | ∆(x, y) ≤ δ, y ∈ U}, (1)

where ∆ is a distance function, and ∆(x, y) denotes the

distance between x and y. For ∀x, y, z ∈ U , it satisfies:

1). ∆(x, y) ≥ 0, ∆(x, y) = 0 if and only if x = y;

2). ∆(x, y) = ∆(y, x)

3). ∆(x, z) ≤ ∆(x, y) + ∆(y, z)

Definition 2: Given a neighborhood approximation space

ℜN = (U,R), for ∀X ⊆ U , two subsets of objects, called

lower and upper approximations of X in terms of relation R,

are defined as

R(X) = {x ∈ U | δ(x) ⊆ X} (2)

R(X) = {x ∈ U | δ(x) ∩X 6= ∅} (3)

The boundary region of X in the approximation space is

formulated as

BR(X) = R(X)−R(X) (4)

The size of the boundary region reflects the roughness

degree of X in the approximation space. Usually we hope

that the boundary region of the decision is as little as pos-

sible for decreasing uncertain in the decision procedure. The

lower approximation is also called positive region, denoted as

POS(x).

Definition 3: Let B ⊆ C, the dependency degree of B to

D is defined as the ratio of consistent objects:

γB(D) =
CARD(POSB(D))

CARD(U)
(5)

Thus, feature selection using Neighborhood Rough Set aims

to select a subset B from the feature set C that gets the

maximal dependency degree of B to D.

IV. OUR ONLINE FEATURE SELECTION METHOD

In this section, we will introduce our new online streaming

feature selection approach in detail. We first give a formal

definition on online streaming feature selection. Then we

introduce three evaluation criteria of “maximal-dependency,

maximal-relevance and maximal-significance” based on the

dependency between condition features and decision classes.

In terms of the new neighborhood relation defined in our

paper, we will present a new online streaming feature selection

algorithm.
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A. Definition of Online Streaming Feature Selection

Let OFS = (U,C ∪ D, f, t) denote an online streaming

feature selection framework, where U is a non-empty finite

set of objects, C is the condition attribute set, and D is the

decision attribute set. Let C = [x1, x2, ..., xn]
T ∈ Rn×d

consist of n samples over a d-dimensional feature space

F = [f1, f2, ..., fd]
T ∈ Rd. Let D = [y1, y2, ..., yn]

T ∈ Rn×1

consist of n samples over the class label (decision feature

space) L = [l1, l2, ..., lm]
T ∈ R. Given U , C and D, at each

time stamp t, we get a feature ft of C ∪D without knowing

the exact number of d in advance. The problem is to derive a

mapping f : C ′ → L at each time stamp t, which is as good

as possible using a subset of features that have arrived so far.

Unlike traditional feature selection methods, at the jth time

stamp, we must decide the new arriving feature fj whether

to maintain or discard. Online streaming feature selection

mainly aims to select features with high correlation and low

redundancy. Thus, we will introduce three evaluation criteria

as follows.

B. Evaluation Criteria of Maximal-dependency, Maximal-

relevance and Maximal-significance

For high-dimensional data sets, there are always many

irrelevant and redundant features. In order to remove these

features in the process of feature selection, we introduce three

evaluation criteria for Rough Set based approaches as follows

[23].

1) Maximal-dependency: Let C = C1, C2, ..., Cm denote

the set of m condition features of a given data set. The task

of feature selection aims to find a feature subset S ⊆ C with

d features (d < m) which have the largest dependency D on

the decision attributes set D.

MaxD(S,D),D = γ{Ci,i=1,2,...d}(D), (6)

where D = γ{Ci,i=1,2,...d}(D) represents the dependency

between the feature subset S and the target class label D as

shown in Eq. 5.

Theoretically, the maximal-dependency is the best evalua-

tion criterion for feature selection with Neighborhood Rough

Set. However, it is difficult to generate the resultant equiva-

lence classes by using the maximal-dependency in the high-

dimensional space. Reasons are analyzed below. First, the

number of samples is often insufficient. Second, the gener-

ation of resultant equivalence classes is usually an ill-posed

problem [20]. Meanwhile, the slow computational speed is

another drawback of maximal-dependency. In addition, it is

not suitable for online streaming feature selection because we

just get one feature at each time stamp and we do not know

the whole feature space in advance.

2) Maximal-relevance: Maximal-relevance is to search fea-

ture with approximates D(S,D) using Eq.6 with the mean

value of all dependency values between individual feature Ci

and target class label D:

MaxR(S,D),R =
1

|S|

∑

Ci∈S

γCi
(D). (7)

The dependency among features which selected according to

maximal-relevance could have rich redundancy. For instance,

if two features fi and fj highly depend on each other, and both

of them are in the candidate feature subset. The respective

class discriminative power would not change a lot after we

remove one of them. Thus, “maximal-relevance” can select

features with high dependency to the condition classes, but it

can not remove redundancy in the selected feature subset.

3) Maximal-significance: The significance of a feature F
to feature set S (F ∈ S) is defined as follows:

Definition 4: Given a condition attribute set S and a decision

attribute set D, a feature F ∈ S, the significance of the feature

F to S is defined as:

σS(D,F ) = γS(D)− γS−F (D) (8)

With the significance of the feature to its feature set, we

can measure each feature’s importance in the selected can-

didate subset. The maximal-significance condition can select

mutually exclusive features as follows:

MaxS(S,D), S =
1

|S|

∑

Ci∈S

{σS(D,Ci)}. (9)

In online streaming feature selection, we can not test all

combinations of candidate features to maximize the depen-

dency of the selected feature set as Eq. 6. Thus, we use the

maximal-relevance condition to select relevant features and

discard irrelevant features at first. Then we use the maximal-

significance criterion to remove nonsignificant features in

selected feature set. The maximal-dependency criterion will be

used as the final goal of selecting the feature set with maximal

dependency. More details refer to Section D.

C. Neighborhood Relation

Definition 1 defines the neighborhood relation with a fixed

distance δ of the nearest neighbors to the target object.

However, for different data sets, the distribution of samples is

asymmetrical. It is difficult to select a uniform δ for all types of

data. When calculating the dependency value, it will be good

to determine the number of neighbors for each target object

by its surrounding instances distribution. Motivated by this,

we define a new neighborhood relation which automatically

selects the number of neighbors for each target object by its

surrounding instances distribution as follows.

Let SC(xi) = {x(i,1), x(i,2), ..., x(i,n−1) | xi∪x(i,1)∪x(i,2)∪
... ∪ x(i,n−1) = U,∆(xi, x(i,1)) ≤ ∆(xi, x(i,2)) ≤ ... ≤
∆(xi, x(i,n−1))} denote all of the neighbors of xi sorted by the

distance from the nearest to the farest. From x(i,1) to x(i,n−1),

assuming it is evenly distributed, we divided ∆(xi, x(i,n−1))
into n − 1 parts {P1, P2, ...Pn−1 | WidthP1

= WidthP2
=

... = WidthPn−1
= P}, and each part contains one sample.

Certainly, it is always non-uniform distribution from x(i,1) to

x(i,n−1). From x(i,1) to x(i,n−1), if the distance between two

instances x(i,k) and x(i,k+1) is bigger than P, it is called a Gap

between x(i,k) and x(i,k+1), denoted as Gap(x(i,k), x(i,k+1)).
Thus, we use the samples between xi and the first Gap as the

nearest neighbors of xi.
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Based on this, we proposed a new neighborhood relation

with adapted neighbors, denoted as AC(x) as shown in Eq.

10.

Definition 5: Given a set of finite and nonempty objects

U = {x1, x2, ..., xn}, the condition feature set C and a

feature subset B (B ⊆ C). For target object xi, let Nxi
=

{x(i,1), x(i,2), ..., x(i,n−1)} denote all the neighbors of xi form

the nearest to the farest on B. The adapted neighborhood of

arbitrary object xi ⊆ U on B is defined as:

AB(xi) = {x | x ∈ {x(i,1), x(i,2)..., x(i,k)}, k ≤ n−1}, (10)

where Gap(x(i,k), x(i,k+1)) is the first Gap from x(i,1) to

x(i,n−1).

More specifically, assume Dmax = ∆(xi, x(i,n−1)) denotes

the maximum distance from xi to its neighbors and Dmin =
∆(xi, x(i,1)) denotes the minimum distance in Nxi

. Thus,

the average distance between elements in Nxi
is Dmean =

Distmax−Distmin
n−1 . We can define the width of Gap as WGap =

1.5 ∗Dmean. From x(i,1) to x(i,n−1), if Gap(x(i,k), x(i,k+1))
is the first Gap, which means ∆(xi, x(i,k+1))−∆(xi, x(i,k)) ≥
WGap and all the neighbors {x(i,j) | 2 ≤ j ≤ k} have

∆(xi, x(i,j)) − ∆(xi, x(i,j−1)) < WGap, we will consider

{x | x ∈ {x(i,1), x(i,2), ..., x(i,k)} as the neighbors of xi.

AB(x) uses different numbers of neighbors for dependency

calculation which makes it competent to handle different kind

of data. The dependency calculating method using this new

neighborhood relation, denoted as Dep-A is given as follows.

Algorithm 1 Dep-A

Require:

XS : sample values on feature set S;

R: neighborhood relation AB(x),
Ensure:

depS : dependency on feature set S
1: cardS : the number of positive samples on S, initialized

to 0

2: cardU : the number of instances of XS

3: FOR each xi in XS

4: find the neighbor samples of xi on R as SR(xi)
5: calculate the card value of xi as Card(SR(xi))
6: cardS = cardS + Card(SR(xi))
7: END FOR

8: depS = cardS/cardU
9: return depS ;

In Algorithm 1, we calculate the CARD value of each in-

stance xi and get the sum for the final dependency degree. The

CARD value ranges from 0 to 1, denoted as the consistency

of xi’s class attribute with its neighbors’ class attributes. In

order to find the neighbors of xi, we need to sort all the

neighbors of xi by distance. The time complexity of quick

sort function is O(n ∗ logn). Thus, the time complexity of

Dep-A is O(|XS |
2 ∗ log|XS |). In the next section, we use

Dep-A for neighborhood dependency calculation in our new

online streaming feature selection algorithm.

D. Our New Online Feature Selection Algorithm

In this section, we introduce our new online feature

selection algorithm using the new neighborhood relation

AB(x) and the “maximal-dependency, maximal-relevance and

maximal-significance” evaluation criteria mentioned above,

called “OFS-A3M” as shown in Alg. 2. The main goal of

this online feature selection algorithm is to maximize DepS
with the feature streams.

Algorithm 2 OFS-A3M

Require:

X: the data samples with condition features;

Y : the decision classes;

Ensure:

S: the selected feature set

1: S: the selected feature set, initialized to {};
2: DepS :the dependency of S to Y , initialized to 0;

3: MeanDepS
: the mean dependency of features in S,

MeanDepS
= 1
|S|

∑
Ci∈S

γCi
(D), initialized to 0;

4: Repeat

5: Get a new feature fi of X at time stamp ti as Xfi ;

6: Calculate the dependency of Xfi as γfi using Dep-A;

7: IF γfi < MeanDepS

8: discard feature fi ; and go to Step 24;

9: ELSE

10: IF γS∪fi > DepS
11: S = S ∪ fi
12: ELSE IF γS∪fi == DepS
13: S = S ∪ fi
14: FOR each feature in S
15: randomly select a feature f ′ in S
16: calculate f ′ ’s significance as σS(f

′)
17: IF σS(f

′) = 0
18: remove feature f ′ from S
19: END IF

20: END FOR

21: ELSE

22: discard feature fi
23: END IF

24: Until no more features are available;

25: return S;

More specifically, if a new feature fi arrives at time stamp

ti, Step 6 calculates the dependency of fi using the dependen-

cy calculation method Dep-A. All the following dependency

computation calls from step 7 to step 17 use Algorithm 1 (Dep-

A) as their calculating method for dependency degree. Step 7

compares the dependency of fi with the mean dependency of

the selected feature set S. If γfi is smaller than MeanDepS

and we add fi into S, the MeanDepS
will decrease. Thus, with

the “maximal-relevance” constraint, fi is discarded when it is

smaller than MeanDepS
.

If fi satisfies the “maximal-relevance” constraint, step 10

compares the dependency of current feature set S with the

dependency of the feature set S ∪ fi. If the dependency of

S ∪ fi is bigger than DepS , which means adding new feature
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fi will increase the dependency of the selected feature set, then

we add fi into S with the “maximal-dependency” constraint.

If the dependency of S∪fi is equal to DepS , we will use the

“maximal-significance” constraint for the analysis of feature

redundancy. For each feature in S ∪ fi, we randomly select a

feature from the candidate feature set and calculate its signifi-

cance according to Eq. 9. We will discard features whose sig-

nificance equal to 0. By the “maximal-relevance”, “maximal-

dependency” and “maximal-significance” constraints, we can

select features with high correlation, high dependency and low

redundancy.

E. Time Complexity of OFS-A3M

The time complexity of OFS-A3M mainly depends on the

dependency function Dep-A.

Suppose the data set is D, the number of instances in D is N
and the number of features in D is F . According to Section C,

the time complexity of Dep-A is O(N2logN). At time stamp

ti, a new feature fi is present to the OFS-A3M algorithm.

Steps 6-8 calculate the dependency of fi and compare it with

MeanDepS
(the mean dependency value of each feature in

selected feature set S). The time complexity is O(N2logN).
If the dependency of fi is smaller than MeanDepS

, fi will be

discarded. Otherwise, we calculate the dependency of S ∪ fi
and compare it with DepS (the dependency of current selected

feature set). This time complexity is also O(N2logN). If the

dependency of S ∪ fi is bigger than DepS , we add fi into

S and go on to the next feature. If the dependency of S ∪
fi is smaller than DepS , fi will be discarded. Only if the

dependency of S∪fi is equal to DepS , we will calculate each

features’ significance and remove the redundant features from

S. The time complexity of this phase is O(|S| ∗N2logN).
Thus, the worst-case time complexity of OFS-A3M is O(F ∗

|S| ∗N2logN).

V. EXPERIMENTAL RESULTS

A. Experiment Setup

In this section, we apply the proposed online feature selec-

tion algorithm on ten data sets, including two UCI data sets

(WDBC, HILL VALLEY with noise), seven DNA microarray

data sets (PROSTATE, DLBCL, GLIOMA, SRBCT, LUNG2,

MLL, CAR) [24], [25] and one NIPS 2003 data set (ARCENE)

[5] as shown in Table I.

TABLE I
EXPERIMENTAL DATA SETS

Data Set Instances Features Classes

WDBC 569 30 2
HILL 606 100 2
SRBCT 83 2308 4
LUNG2 203 3312 5
GLIOMA 50 4433 4
MLL 72 5848 3
PROSTATE 102 5966 2
DLBCL 77 6285 2
CAR 174 9182 11
ARCENE 200 10000 2

In our experiments, we use two basic classifiers, KNN and

SVM in Matalab R2015b to evaluate a selected feature subset.

We perform 10-fold cross-validation on each data set. All

experimental results are conducted on a PC with Intel(R) i5-

3470S, 2.9 GHz CPU, and 8 GB memory.

B. OFS-A3M vs. Traditional Feature Selection Methods

In this section, we compare OFS-A3M with three represen-

tative traditional feature selection methods, including ReliefF

[17], PCC (Pearson Correlation Coefficient) [26] and MI

(mutual information) [19].

All these algorithms are implemented in MATLAB. The K
value of ReliefF is set to 5 for the best performance. None

of these three traditional feature selection methods can handle

the scenario of feature streaming in an online manner. Thus,

we rank all features from high to low and select the same

number of features for OFS-A3M. We evaluate OFS-A3M and

all competing ones on the predictive accuracy with 10-fold

cross-validation.

Table II and Table III summarize the prediction accuracy of

OFS-A3M against the other three competing algorithms using

the basic classifiers of KNN (k=1) and SVM .

TABLE II
PREDICTIVE ACCURACY USING THE KNN CLASSIFIER (%)

Data Set OFS-A3M MI PCC ReliefF

WDBC 95.43 95.25 95.78 95.78

HILL 58.91 52.97 50.17 54.62
SRBCT 100 98.8 96.39 87.95
LUNG2 99.01 90.15 84.24 86.21
GLIOMA 100 64 74 44
MLL 100 86.67 53.33 100

PROSTATE 96.08 92.16 91.18 90.2
DLBCL 100 89.61 84.42 96.1
CAR 97.7 89.66 83.91 90.8
ARCENE 77 72 52 55

AVERAGE 92.41 83.13 76.54 80.07

TABLE III
PREDICTIVE ACCURACY USING SVM AS THE BASE CALSSIFIER (%)

Data Set OFS-A3M MI PCC ReliefF

WDBC 97.36 96.31 97.01 96.84
HILL 53.63 51.16 49.83 54.13
SRBCT 91.57 95.18 96.39 90.36
LUNG2 95.57 90.15 84.73 89.66
GLIOMA 86 58 74 48
MLL 100 100 26.67 100

PROSTATE 92.16 95.1 92.16 91.18
DLBCL 97.4 92.21 88.31 88.31
CAR 89.08 89.66 85.06 89.66

ARCENE 71 67 52 64

AVERAGE 87.67 83.67 74.62 80.92

From Table II and Table III, we have the following obser-

vations.

• OFS-A3M vs. PCC. OFS-A3M outperforms PCC on nine

of the ten data sets at least in both cases. PCC gets the

predictive accuracy about 50% and 70% on data sets

ARCENE and GLIOMA with both KNN and SVM, while

OFS-A3M gets the predictive accuracy by higher than
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70% and 90% respectively. OFS-A3M is higher PCC 20%

on predictive accuracy on these two data sets. Thus, OFS-

A3M can handle different types of data better than PCC.

• OFS-A3M vs. ReliefF. OFS-A3M gets the higher predic-

tive accuracy than ReliefF on eight of the ten data sets.

ReliefF is similar to OFS-A3M, because they both use the

neighbors’s information for feature selection. However,

OFS-A3M is superior to ReliefF on predictive accuracy

with adapted neighbors.

• OFS-A3M vs. MI. OFS-A3M outperforms MI on seven of

the ten data sets at least. Especially on data set GLIOMA,

OFS-A3M over MI almost 30% on predictive accuracy

with both KNN and SVM.

In sum, OFS-A3M provides best overall performance on

seven of the ten data sets, while it is also comparable to the

best competing approaches on the rest three data sets. Mean-

while, OFS-A3M gets the highest mean predictive accuracy

with both KNN and SVM.

C. OFS-A3M vs. Online Feature Selection Methods

In this section, we compare our algorithm with four state-of-

the-art online feature selection methods: Alpha-investing [4],

OSFS [5], Fast-OSFS [5], SAOLA [8].

All aforementioned algorithms are implemented in MAT-

LAB [27]. The significance level α is set to 0.01 for OSFS,

Fast-OSFS and SAOLA. For Alpha-investing, the parameters

are set to the values used in [4].

Tables IV and Table V summarize the predictive accuracy

of OFS-A3M against the other four algorithms using the KNN

(k=1) and SVM classifiers. Table VI and Table VII show the

running time and number of selected features of OFS-A3M

against other four algorithms.

From Tables IV - VII , we have the following observations.

• OFS-A3M vs. Alpha-investing. Alpah-investing is the

fastest algorithm among all these five compared methods.

However, in Table IV and Table V, we can see that OFS-

A3M outperforms Alpha-investing on eight of the ten data

sets at least with both KNN and SVM. Meanwhile, we

can see that the features selected by Alpha-investing can

not fit for some data sets. For example, Alpha-investing

only gets the predictive accuracy of 38% and 56% on

GLIOMA in cases of KNN and SVM respectively. The

reason is that these data sets are very sparse and Alpha-

investing can only select the first few features of these

data sets.

• OFS-A3M vs. OSFS. OFS-A3M outperforms OSFS on

eight of the ten data sets with both KNN and SVM. On

data sets HILL, OSFS can not select any features and

gets the prediction accuracy 0. In addition, on GLIOMA,

OSFS only gets the predictive accuracy 66% and 74% in

cases of KNN and SVM respectively, while OFS-A3M

gets the predictive accuracy 100% and 90%. OFS-A3M

is faster than OSFS on running time. OSFS selects the

fewest number of features among all these five compared

methods. Thus, some important information is missing

which causes the lower predictive accuracy.

• OFS-A3M vs. Fast-OSFS. OFS-A3M performs better

than Fast-OSFS on eight of the ten data sets. Fast-OSFS

is faster than OFS-A3M. Nevertheless, similar to OSFS,

Fast-OSFS selects very few features on data sets, which

leads to the missing of some important information.

• OFS-A3M vs. SAOLA. SAOLA is faster than OFS-A3M.

However, OFS-A3M outperforms SAOLA on nine of the

ten data sets with both KNN and SVM. On the data set

HILL, SAOLA can not select any features and get the

predictive accuracy 0. This demonstrates that SAOLA can

not handle some types of data well and can not select any

features on these data sets. Thus, OFS-A3M is superior

to SAOLA.

In sum, our algorithm OFS-A3M is not faster than some

competing algorithms of Alpah-investing, Fast-OSFS and

SAOLA, but it outperforms all competing algorithms on all

data sets.

VI. CONCLUSION

In this paper, we gave a brief introduction of Neighborhood

Rough Set theory and defined a new neighborhood relation

with adapted neighbors. In order to select features which can

get high separability, we used the information of adapted

number of neighboring instances near by the target object.

Based on this new neighborhood relation, we proposed a new

online streaming feature selection approach. With three eval-

uation criteria “maximal-dependency, maximal-relevance and

maximal-significance”, our new approach can select features

with high correlation, high dependency and low redundancy.

As compared to three traditional feature selection methods

and four state-of-the-art online feature selection algorithms,

the proposed algorithm performs better on feature selection

with feature streams in an online manner.

ACKNOWLEDGMENT

This work is supported in part by the National Key Research

and Development Program of China under grant 2016YF-

B1000901, the Program for Changjiang Scholars and Inno-

vative Research Team in University (PCSIRT) of the Ministry

of Education, China, under grant IRT13059, the Specialized

Research Fund for the Doctoral Program of Higher Education

under grant 20130111110011, the Natural Science Founda-

tion of China under grants (61273292, 61229301, 61503112,

61673152).

REFERENCES

[1] H. Liu and H. Motoda, Computational Methods of Feature Selection.
Chapman and Hall/CRC Press, 2007.

[2] D. Wang, D. Irani, and C. Pu, “Evolutionary study of web spam: Webb
spam corpus 2011 versus webb spam corpus 2006,” in Proceedings of

the sixteenth annual ACM symposium on parallelism in algorithms and

architectures, ser. CollaborateCom-2012, 2012, pp. 40–49.
[3] W. Ding, T. F. Stepinski, Y. Mu, L. Bandeira, R. Ricardo, Y. Wu,

Z. Lu, T. Cao, and X. Wu, “Subkilometer crater discovery with boosting
and transfer learning,” Acm Transactions on Intelligent Systems &

Technology, vol. 2, no. 4, pp. 1–22, 2011.
[4] J. Zhou, D. P. Foster, R. A. Stine, and L. H. Ungar, “Streamwise feature

selection,” Journal of Machine Learning Research, vol. 3, no. 2, pp.
1532–4435, 2006.

140



TABLE IV
PREDICTIVE ACCURACY USING KNN AS THE BASE CLASSIFIER (%)

Data Set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA

WDBC 95.25 95.61 96.13 95.78 91.56
HILL 57.59 51.49 0 0 0
SRBCT 100 90.36 87.95 87.95 93.98
LUNG2 99.01 92.61 84.24 86.21 89.66
GLIOMA 100 38 66 78 76
MLL 86.67 93.33 93.33 73.33 80
PROSTATE 97.06 90.2 93.14 90.2 96.08
DLBCL 100 92.21 98.7 96.1 97.4
CAR 98.28 75.29 63.79 76.44 81.61
ARCENE 73 55 51 66 62

AVERAGE 90.69 77.41 73.43 75.00 76.83

TABLE V
PREDICTIVE ACCURACY USING SVM AS THE BASE CLASSIFIER (%)

Data Set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA

WDBC 97.89 97.01 96.31 96.31 91.92
HILL 51.16 50.33 0 0 0
SRBCT 95.18 92.77 91.57 90.36 92.77
LUNG2 92.12 95.07 90.15 90.15 89.66
GLIOMA 90 56 74 84 82
MLL 100 80 93.33 80 73.33
PROSTATE 90.2 97.06 94.12 95.1 97.06
DLBCL 98.7 96.1 96.1 97.4 98.7

CAR 89.08 72.41 64.37 78.74 86.21
ARCENE 74 70 64 69 65

AVERAGE 87.83 80.67 76.40 78.10 77.66

TABLE VI
RUNNING TIME (SECONDS)

Data Set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA

WDBC 2.6282 0.0037 0.2204 0.1026 0.0149
HILL 5.6747 0.0055 0.0151 0.0149 0.0154
SRBCT 5.3277 0.2348 10.991 1.313 0.8906
LUNG2 40.4546 0.7753 523.7902 12.9141 2.5247
GLIOMA 6.0151 0.2372 21.6944 2.1758 2.5885
MLL 10.3455 0.3735 36.1819 3.1331 5.0869
PROSTATE 11.1533 0.4904 13.3175 1.8618 1.7808
DLBCL 12.9231 0.458 20.5061 1.9523 2.1477
CAR 82.852 1.4673 868.9788 14.5953 4.5173
ARCENE 32.718 0.8319 20.4237 2.1466 4.9024

AVERAGE 21 0.4877 151.61 4.02 2.45

TABLE VII
THE NUMBER OF SELECTED FEATURES

Data Set OFS-A3M Alpha-investing OSFS Fast-OSFS SAOLA

WDBC 18 20 3 4 2

HILL 9 4 0 0 0
SRBCT 12 26 5 8 17
LUNG2 26 45 11 16 30
GLIOMA 17 4 3 7 17
MLL 9 7 3 8 28
PROSTATE 30 12 3 5 12
DLBCL 12 8 5 8 22
CAR 44 25 8 14 40
ARCENE 27 4 5 7 37

AVERAGE 20.4 15.5 4.6 7.7 20.5

[5] X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu, “Online feature selection
with streaming features,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 35, no. 5, pp. 1178–1192, 2013.

[6] J. Wang, M. Wang, P. Li, L. Liu, Z. Zhao, X. Hu, and X. Wu, “Online
feature selection with group structure analysis,” IEEE Transactions on

Knowledge and Data Engineering, vol. 27, pp. 3029–3041, 2015.

[7] J. Wang, P. Zhao, S. C. Hoi, and R. Jing, “Online feature selection and its
applications,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 3, pp. 698–710, 2013.

[8] K. Yu, X. Wu, W. Ding, and J. Pei, “Scalable and accurate online feature

141



selection for big data,” ACM Transactions on Knowledge Discovery from

Data, vol. 11, no. 2, 2016.
[9] S. Eskandari and M. Javidi, “Online streaming feature selection using

rough sets,” International Journal of Approximate Reasoning, vol. 69,
no. C, pp. 35–57, 2016.

[10] Z. Pawlak, Rough Sets - Theoretical Aspects of Reasoning about Data.
Dordrecht , Boston: Kluwer Academic Publishers, 1991.

[11] L. T and G. Y, “Computing on binary relations i: Data mining and
neighborhood systems,” in Proceedings of the Rough Sets in Knowledge

Discovery, 1998, pp. 107–121.
[12] Q. Hu, D. Yu, J. Liu, and C. Wu, “Neighborhood rough set based

heterogeneous feature subset selection,” Information Sciences, vol. 178,
no. 18, pp. 3577–3594, 2008.

[13] Q. Hu, J. Liu, and D. Yu, “Mixed feature selection based on granulation
and approximation,” Knowledge-Based Systems, vol. 21, no. 4, pp. 294–
304, 2008.

[14] J. Zhang, T. Li, D. Ruan, and D. Liu, “Neighborhood rough sets for
dynamic data mining,” International Journal of Intelligent Systems,
vol. 27, no. 4, pp. 317–342, 2012.

[15] Q. Hu, D. Yu, and Z. Xie, “Numerical attribute reduction based on
neighborhood granulation and rough approximation,” Journal of Soft-

ware, vol. 19, no. 3, pp. 640–649, 2008.
[16] S. U. Kumar and H. H. Inbarani, “Pso-based feature selection and

neighborhood rough set-based classification for bci multiclass motor
imagery task,” Neural Computing and Applications, pp. 1–20, 2016.

[17] M. Robnik-Sikonja and I. Kononenko, “Theoretical and empirical analy-
sis of relieff and rrelieff,” Machine Learning, vol. 53, no. 1-2, pp. 23–69,
2003.

[18] Q. Gu, Z. Li, and J. Han, “Generalized fisher score for feature selection,”
in Conference on Uai, 2011.

[19] J. R. Vergara and P. A. Estvez, “A review of feature selection methods
based on mutual information,” Neural Computing and Applications,
vol. 24, no. 1, pp. 175–186, 2014.

[20] H. Peng, F. Long, and C. Ding, “Feature selection based on mutu-
al information: Criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans on Pattern Analysis and Machine Intelligence,
vol. 27, no. 8, pp. 1226–1238, 2005.

[21] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B(Methodological), pp.
267–288, 1996.

[22] M. Wang, H. Li, D. Tao, K. Lu, and X. Wu, “Multimodal graph-
based reranking for web image search,” IEEE Transactions on Image

Processing, vol. 21, no. 11, pp. 4649–4661, 2012.
[23] P. Maji and S. Paul, “Rough set based maximum relevance-maximum

significance criterion and gene selection from microarray data,” Interna-

tional Journal of Approximate Reasoning, vol. 52, pp. 408–426, 2011.
[24] K. Yang, Z. Cai, J. Li, and G. Lin, “A stable gene selection in microarray

data analysis,” BMC Bioinformatics, vol. 7, p. 228, 2006.
[25] L. Yu, C. Ding, and S. Loscalzo, “Stable feature selection via dense

feature groups,” in Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2008.
[26] M. Wasikowski and X. Chen, “Combating the small sample class

imbalance problem using feature selection,” IEEE Transactions On

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1388–1400, 2010.
[27] K. Yu, W. Ding, and X. Wu, “Lofs: Library of online streaming feature

selection,” Knowledge-Based Systems, vol. 113, no. 1-3, 2016.

142


